 Actually, the syntactic structure provides valuable information about the semantic content. Being English the language of the semantic web and presenting an S (subject) V (verb) O (object) structure, we are in position to attach to the RDF Subject + Predicate + Object triple the same semantic charge. The referenced self /the relationship /the reference Knowledge organisation has to be semantically marked and structured in Concept A – relationship – Concept B triads within a context.

Open Domain Question Answering Systems process syntactically documents written in natural language. Their aim is to locate textual areas in which the query is satisfied. Discursive connectors foster retrieval systems and function as breadcrumb trails. Thus semantic web users will reach a negotiated, well-structured compromise towards a better-connected World through the means of the query language, which has to be an ontology language. An ontology defines the terms used to describe and represent an area of knowledge. It is easier for the Semantic Web to adopt a SVO syntactic structure rather than a SOV one.

Thanks to an interconnected technology of data (Linked Data System) the Semantic Web finds its easy application in the education domain. Thus, following a previously tested linked open data resource list management tool for undergraduate students at the University of Plymouth (United Kingdom), we are ready to announce its benefits in syllabuses throughout the World.

The Semantic Web technology serves best for:

1) Unifying the description of resources,
2) Improving the interoperability through the use of linked open data and
3) Encouraging the semantics of data among students and professors so as to foster content-awareness.

Thus, individual and community tagging behaviours take place and help to construct knowledge work.

A better connected Education for a better connected World